| Please check the examination details below before entering your candidate information |                         |  |  |  |
|---------------------------------------------------------------------------------------|-------------------------|--|--|--|
| Candidate surname                                                                     | Other names             |  |  |  |
| Pearson Edexcel Interi                                                                |                         |  |  |  |
| Tuesday 21 May 202                                                                    | 24                      |  |  |  |
| Morning (Time: 2 hours)                                                               | Paper reference 4PM1/01 |  |  |  |
| Further Pure Mathematics PAPER 1                                                      |                         |  |  |  |
| Calculators may be used.                                                              | Total Marks             |  |  |  |

## **Instructions**

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
  - there may be more space than you need.
- You must NOT write anything on the formulae page.
   Anything you write on the formulae page will gain NO credit.

# Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets
  - use this as a guide as to how much time to spend on each question.

## **Advice**

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶





## **International GCSE in Further Pure Mathematics Formulae sheet**

#### Mensuration

**Surface area of sphere** =  $4\pi r^2$ 

Curved surface area of cone =  $\pi r \times \text{slant height}$ 

Volume of sphere =  $\frac{4}{3}\pi r^3$ 

#### Series

#### **Arithmetic series**

Sum to *n* terms,  $S_n = \frac{n}{2} [2a + (n-1)d]$ 

### Geometric series

Sum to *n* terms, 
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity, 
$$S_{\infty} = \frac{a}{1-r} |r| < 1$$

#### **Binomial series**

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for  $|x| < 1, n \in \mathbb{Q}$ 

#### **Calculus**

## **Quotient rule (differentiation)**

$$\frac{\mathrm{d}}{\mathrm{d}x} \left( \frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

## **Trigonometry**

#### Cosine rule

In triangle ABC:  $a^2 = b^2 + c^2 - 2bc \cos A$ 

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

## Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$



# Answer all TEN questions.

# Write your answers in the spaces provided.

# You must write down all the stages in your working.

| 1 | In triangle ABC, $AB = 2x \text{ cm}$ , $BC = 3x \text{ cm}$ and $AC = 4x \text{ cm}$ |
|---|---------------------------------------------------------------------------------------|
|   | The area of triangle $ABC$ is 50 cm <sup>2</sup>                                      |
|   | Find, to 2 decimal places, the value of <i>x</i>                                      |

(4)

(Total for Question 1 is 4 marks)



| 1 |
|---|
| Z |

$$f(x) = 2x^2 + 4x + 9$$

Given that f(x) can be written in the form  $A(x+B)^2 + C$ , where A, B and C are integers,

(a) find the value of A, the value of B and the value of C

(3)

- (b) Hence, or otherwise, find
  - (i) the value of x for which  $\frac{1}{f(x)}$  is a maximum
  - (ii) the maximum value of  $\frac{1}{f(x)}$

(2)

| <br> | <br> |  |
|------|------|--|
| <br> | <br> |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |





3 (a) Show that  $\sum_{r=1}^{n} (5r-3) = \frac{n}{2} (5n-1)$ 

(3)

(b) Hence, or otherwise, evaluate  $\sum_{r=31}^{60} (5r-3)$ 

(2)

Given that  $\sum_{r=1}^{n} (5r - 3) = 3783$ 

(c) find the value of n

(3)

| <br> | <br> | <br> |
|------|------|------|
|      |      |      |
|      |      |      |
|      |      |      |



| 4 | The surface area of a sphere with radius $r$ cm is increasing at a constant rate of $50\pi$ cm <sup>2</sup> /s |     |  |  |
|---|----------------------------------------------------------------------------------------------------------------|-----|--|--|
|   | Find, in cm <sup>3</sup> , the exact volume of the sphere at the instant when the rate of increase             |     |  |  |
|   | of $r$ is $\frac{5}{12}$ cm/s                                                                                  | (8) |  |  |
|   |                                                                                                                |     |  |  |
|   |                                                                                                                |     |  |  |
|   |                                                                                                                |     |  |  |
|   |                                                                                                                |     |  |  |
|   |                                                                                                                |     |  |  |
|   |                                                                                                                |     |  |  |
|   |                                                                                                                |     |  |  |
|   |                                                                                                                |     |  |  |
|   |                                                                                                                |     |  |  |
|   |                                                                                                                |     |  |  |
|   |                                                                                                                |     |  |  |
|   |                                                                                                                |     |  |  |
|   |                                                                                                                |     |  |  |
|   |                                                                                                                |     |  |  |
|   |                                                                                                                |     |  |  |
|   |                                                                                                                |     |  |  |
|   |                                                                                                                |     |  |  |
|   |                                                                                                                |     |  |  |
|   |                                                                                                                |     |  |  |
|   |                                                                                                                |     |  |  |





| 5 | A particle <i>P</i> is moving along the <i>x</i> -axis.<br>At time <i>t</i> seconds $(t \ge 0)$ the acceleration, $a \text{ m/s}^2$ , of <i>P</i> is given by $a = 3t - 4$ |     |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | When $t = 0$ , P is at rest.                                                                                                                                               |     |
|   | (a) Find the velocity of $P$ when $t = 4$                                                                                                                                  | (2) |
|   | At time Town 1 To 0 Distinct of most                                                                                                                                       | (3) |
|   | At time $T$ seconds, $T > 0$ , $P$ is instantaneously at rest.                                                                                                             |     |
|   | (b) Find the value of T                                                                                                                                                    | (2) |
|   | When $t = 0$ , P is at the point with coordinates $(-10, 0)$                                                                                                               |     |
|   | (c) Find the displacement of $P$ from the origin when $t = 3$                                                                                                              |     |
|   |                                                                                                                                                                            | (4) |
|   |                                                                                                                                                                            |     |
|   |                                                                                                                                                                            |     |
|   |                                                                                                                                                                            |     |
|   |                                                                                                                                                                            |     |
|   |                                                                                                                                                                            |     |
|   |                                                                                                                                                                            |     |
|   |                                                                                                                                                                            |     |
|   |                                                                                                                                                                            |     |
|   |                                                                                                                                                                            |     |
|   |                                                                                                                                                                            |     |
|   |                                                                                                                                                                            |     |
|   |                                                                                                                                                                            |     |
|   |                                                                                                                                                                            |     |
|   |                                                                                                                                                                            |     |
|   |                                                                                                                                                                            |     |
|   |                                                                                                                                                                            |     |
|   |                                                                                                                                                                            |     |
|   |                                                                                                                                                                            |     |
|   |                                                                                                                                                                            |     |
|   |                                                                                                                                                                            |     |
|   |                                                                                                                                                                            |     |





| 6 | The line $l$ passes through the point $A$ with coordinates $(-2, 2)$ and the point $B$ with |
|---|---------------------------------------------------------------------------------------------|
|   | coordinates (3, 12)                                                                         |
|   |                                                                                             |

The point C with coordinates (p, q) lies on l such that AC : CB = 3 : 2

(a) Find the value of p and the value of q

**(2)** 

The line k is perpendicular to l and passes through the point C

(b) Show that an equation of k is 2y + x - 17 = 0

**(4)** 

The line k crosses the x-axis at the point D

(c) Find the exact length of CD

(3)

The point X with coordinates (m, n) lies on l such that

area of triangle  $DXC = 80 \,\mathrm{units^2}$ 

Given that m > 0

(d) find the value of m and the value of n

**(7)** 

| <br> | <br> |  |
|------|------|--|
| <br> | <br> |  |
|      |      |  |
| <br> | <br> |  |





| Question 6 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |







Figure 1

Figure 1 shows a sketch of part of the curve C with equation

$$y = \frac{x^2}{4} - 3\sqrt{x} + 8$$

The point P lies on C and has coordinates (4, a)

(a) Show that a = 6

(1)

The line L is the normal to C at the point P

(b) Show that an equation of L is 5y + 4x - 46 = 0

**(6)** 

The finite region R is bounded by the curve C, the line L, the x-axis and the line with equation x = 1

(c) Use calculus to find the exact area of R

**(6)** 



| Question 7 continued |  |  |  |  |
|----------------------|--|--|--|--|
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |



| 8 | The sum of the first and second terms of a geometric series $G$ is 400 |     |
|---|------------------------------------------------------------------------|-----|
|   | The sum of the second and third terms of $G$ is 100                    |     |
|   |                                                                        |     |
|   | (a) Show that the common ratio of $G$ is $\frac{1}{4}$                 | (4) |
|   | (b) Show that the first term of $G$ is 320                             | (2) |
|   | (c) Find the sum to infinity of G                                      | (2) |
|   | The sum to $n$ terms of $G$ is $S_n$                                   |     |
|   | (d) Find, using logarithms, the least value of n such that             |     |
|   | $S_n > 426.6$                                                          |     |
|   | п                                                                      | (4) |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |



| Question 8 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |





| 9 | (a) Find the value of $a$ such that $\log_a 8 =$ | $\frac{3}{4}$ |
|---|--------------------------------------------------|---------------|
|---|--------------------------------------------------|---------------|

(2)

(b) Show that

$$3x\log_2 x - 4\log_{16} 8 + 6x\log_4 8 - \log_2 x = \log_2 (8x)^{3x-1}$$

(c) Hence solve the equation  $3x \log_2 x - 4 \log_{16} 8 + 6x \log_4 8 - \log_2 x = 0$ 

| /  | 2   |
|----|-----|
| 1  | 4 1 |
| ٠. |     |

| <br> | <br> | <br> | <br> |
|------|------|------|------|
| <br> | <br> | <br> | <br> |
|      |      |      |      |
| <br> | <br> | <br> | <br> |
|      |      |      |      |





| Question 9 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |





| 10 | The curve C has equation $y = \frac{ax - 5}{b - x}$ where a and b are integers and $x \neq b$                                                 |     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | One intersection of C with the coordinate axes is at the point with coordinates $\left(\frac{5}{4},0\right)$                                  |     |
|    | The asymptote parallel to the y-axis has equation $x = 3$                                                                                     |     |
|    | (a) Find the value of a and the value of b                                                                                                    | (0) |
|    |                                                                                                                                               | (2) |
|    | (b) Sketch C, showing clearly the asymptotes with their equations and the coordinates of the points of intersection with the coordinate axes. |     |
|    |                                                                                                                                               | (5) |
|    | The straight line $l$ with equation $4y - 7x = k$ has no points of intersection with $C$                                                      |     |
|    | (c) Show, using algebra, that the range of possible values of $k$ can be written as                                                           |     |
|    | m < k < n                                                                                                                                     |     |
|    | where $m$ and $n$ are integers to be found.                                                                                                   | (0) |
|    |                                                                                                                                               | (9) |
|    |                                                                                                                                               |     |
|    |                                                                                                                                               |     |
|    |                                                                                                                                               |     |
|    |                                                                                                                                               |     |
|    |                                                                                                                                               |     |
|    |                                                                                                                                               |     |
|    |                                                                                                                                               |     |
|    |                                                                                                                                               |     |
|    |                                                                                                                                               |     |
|    |                                                                                                                                               |     |
|    |                                                                                                                                               |     |
|    |                                                                                                                                               |     |
|    |                                                                                                                                               |     |
|    |                                                                                                                                               |     |



| Question 10 continued |
|-----------------------|
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |





| Question 10 continued |                                     |
|-----------------------|-------------------------------------|
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       | (Total for Question 10 is 16 marks) |
|                       | TOTAL FOR PAPER IS 100 MARKS        |

